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STATISTICAL MECHANICS OF SOLITONS

Alan Bishop
Theoretical Division. Los Alamos Scientific Laboratory

University of California
Los Alamos, New Msxico 87545

ABSTRACT

We broadly review the status of statistical mechanics theory (classi-

cal and quantum, statics and dynamics) for 1-D soliton or solitary-wave-

bearing systems. Primary attention is given to (i) perspective for existing

results with evaluation and representative literature guide; (ii) motivation

and status report for remaining problems; (iii) discussion of connections

with other 1-D topics represented in the Conference and elsewhere:

A) We introduce a general class of 1-D kink solitary-wave-bearing
.

Harniltonians’ (x = scaled space, t ❑ scaled time)

H=
I

7 + I>qdxl’,qt ;+v(Lf)) , (1)

which includes for V the sine Gordon (SG), ~,-four,double-fG, Eshelby, etc.,

potentials. Classical, low-T, static properties ?re now understood fully

for the whole class (l), including striking universal T-dependencies. Com-

plete agreement is obtained between transfer Integral results and a

“phenomenologlcal” approach in terms of an effective gas of independ~nt kinks

and linear phonons -- ~f a (thermally) renormalizerl kink energy is used

because of kink-pi’onon interactions. Static correlations are also described,

emphasizing depend~r,cies on the particular functions being correlated.

@tftatfve phenornenology at higherT is discussed since this is most relevant.—

to topical applications (e.g. talks of J. R. Schrieffer, M. Steiner). Some

modifications to the gradient coupling term in (1) arc needed in, e.g.,

spin models. We disctiss these and their effects.



B) Several “phenomenological” schemes for kink-phonon st~+istical

mechanics have been used in the literature. They all amount to perturbation

treatments about explicit kink profiles, accommodating “zero-frequency”

,,2modes by the Introduction of “collective-coordinates. These techniques

are illustrated with a 1-D but ~-component order-parameter model, the

ferromagnetic Heisenberg chain with easy-axis anisotropy.3 We emphasize

the equivalence of all collective coordir,te schemes (including that in A)

and discuss their limitations.

C) The status of dynamic cc, ~l~t+nl; function calculations for class

(1) wI1l be summarized within both Hamiltonian and Fokker-Planck frameworks,

emphasizing strongly nonlinear (soliton) signatures - see also talks of M.

Buttlker and T, Schneider.

D) Kink-solitons and their statistical mecilanics (certainly at low-T)

are now very well understood and of little further interest.. Much the

most challenging problems remaining cor:ern non-topological pulse or envelo~.—

solitofls (of wide physical relevance). We illustrate these with the solitons,

of the Toc!alattice, a cubic Schrodinger equation, the continuum ferromagnetic

Heisenberg chain, and the SG breather, A very appealing approach is to use

the comp”,ete integrabllity of these strict soliton systems to transform to

a ~atllra!action-angle variable (soliton) basis. Ouilding on the introduction

of D. W. McLaughlin, we investigate this approach to classical statistical

mechanics and describe some generic problems for non-kink soliton$.

E) Some of the problems in D) can be overcome if we consider quantum.—

statistical mechanics. We summarize approaches and pertinent results for

strict and Ilun-strict sollton systems - more detailed discussion is given by

K, Maki. In particular, we emphasize the quantization scheme for strict

soliton systems due to Fadeev, et al., especially as applied to the X-Y-2



Helsenberg chain. Connections with Bethe ansatz calculations for spin-%

XYZ chains (see also J. C. Bonner) and other exactly soluble quantum models

(+ exactly integrable quantum models), allows some lessons to be drawn

~bout sollton statistical mechanics.

F) Finally, we emphasize the ubiquity of the soliton concept in 1-D

physics by noting its connections with so many 1-D problems (experimental

and theoretical) discussed at this Conference and elsewhere.

1) J. F. Currie , J. A. Krumhansl, A. R. Bishop, S. E. Trullinger, Phys.

Rev. B, in press (1980); R. M. De Leonardls and S. E. Trullinger,

preprint (1980).

2) e.g. J, c, Langer, Adv. Phys. ~, 108 (1!367).

3) A, R. Bishop, K. Nakamura, T. Sasada, preprint (1980).

4) e.g. E. K. Sklyanin, L. D. Faddeev, SoV. Phys. Lokl. ~., 9~2 (1978;.



STATISTICAL HECHANICS OF SOLITONS

Alan Bishop
Theoretical Division, Los Alamos Scientific Laboratory

University of California
Los AlamGs, New?lexico 87545

1. Introduction

I was asked to talk about the statistical mechanics (SM) of solitons (in l-D).
This is an almost open-ended brief -- indeed the “soliton” concept is one of
the major unifying threads of low-D physics. Fortunately, at this Conference
there are a number of inter-related soliton contributions. Here, I ha~(e
decided to (i) indicate natural connections with other invited papers; (ii)
survey what is known z+i70rousZy about soliton SM, what is conjectured, and what
i~ortant open questions remain; (iii) emphasize Stiof solitons rather than
of soliton Hamiltonians. By this I mean that I will mostly stress what Is
known rigorously about “solit6ns” as (nonlinear) elementary modes. I contrast
this with purely numerical results (e.g. from the transfer integral operator
(TIO) or molecular dynamics (MD)) without interpretation or with al~prozimutc
mode interpretations -- these are hopefully useful for experimental guidance
and will be surveyed by SCHNEIDER. I will omit any discussion of dynamics
here. Little is known rigorously; the many interesting qu~stions concerning
analytic, numerical or phenomcflo],ogicalapproaches in Hamiltonian or Langevin
frameworks will be surveyed by BUTTIKER and SCHNEIDER.

2. Representative Models

It would be inappropriate to restrict ourselves to solitons in thr strict
mathematical sense (see McLAUGHLIN): the soliton paradigm is far more per-
vasive [1,2]. Nevertheless, strict solitons systems are valuabl~ test models
and also of deep interest to the mathematical physicist. We include sev~ral
below:

Am NonlLnc~P Khi.tl-Gurdm (h’G)
[1-3j to this class of nonlineal
tions. The general HamiltonIan
field {$n) (Iettice sites label’

C?2ULILI: Sustained attention has been given
Hamiltonians supporting kink-sol iton ehcita-
1s defined on a dimensionless one-component
ed by {II)) and has the form

A sets the energy scale and fis the lattice spacing. The continu’inl(or
“displacive”) limit (Co/Illo~’ 1) is especially attractive theoretically”

f]
jf+jx;{2

/
(xSt) + ; c: $:(x)t) + W@) .

(1)

(2)

In either (1) or (2) the local potential V(t) iS the sole source of nonlin-
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earity. Its only restriction Is that it have at least tw degenerate minima
(at sa~$ ❑ 0 ), With (for simplicity) local smetry about the minima.
This is suffi~??nt to admit a topologically stable kink solution to the
equation of motion from (2):

(3)

The single-kink (or antikink) excitation translating “ elocity v carries
~y~~~)h (d ~co/me), andthe field from $1 * to $2 , over a distance = d(l -

is found easiiy ‘ [1-3].’ The single kink ener, E v
tivi t~c” d~a~ = ~ ~2. ~ = MKV(l -

~!~~~ +p2C ; E
ndence (implicit in (31):2 ~f{) =KE~~f~~~~~~f~~!~~e

v /co)’” ; MK = ‘1
Su~h kink s81utio~s areKifl’striking contrast to familiar ‘i “

.
small ampli-

tude (<<1+,-$21), approximate, harmonic (“linear phonon”) solutions
$(x,t) - 01 z a exp[i(kx-tikt)] with cor’tinuum (Debye) dispersions

(4)

The nonlinear KG class contains several examples which have long been prac-
tice models for “soliton” SM. For example the “sine-Gordon” (SG)
[V(4) = 1 - COSC,] is (effectively) considered in [4] and this and other peri-
odic lncal potentials are studied in [5] (such as the Eshelby form
v(d)= (Ifl - 1)2, periodically continued). Again tile“q-four” form [6]
v(q) = (u, - 1) /8 is the most familiar of Landau ~ <pansions but many other
such unbounded potentials are studied, as are potentials supporting several
kink types, e.g. the “double SG” [7]. The important recent developments
(N53,4) are the proof of an exact kink statistical mechanics at low tempera-
ture (T), ana of Its validity for the uho2e class (2). (Differences between
periodic and unbounded potentials arc important at high-T or for dynamics. )
The discrctc lattlce (cf. (l)) also su~~orts harmGnic modes (with a trivi-
ally modified dispersion [l,2])and kinks, but these interact increasingly
stroi~glyas d/L decreases. Conveniently, however, many low v kink properties
(e.g. energy, width) ar~ only weakly aftec’ed unless d - L[8].

One other excitation must be mentioned. A>ii;~w~kl?ll,-perturbation theory
about $1 z suggests a tendency towards the fnrmation of spatially and tem-
porally ‘ coherent excit~tions :particle-like envelopes with an oscillatory
internal motion. We refer to thase generically as “breathers”. (Indeed
lilear SG wave-trains are modulationally unstable to breather formation, )
They are observed in Ml)simulations of l-four or SG, and in deterministic
simulat~ons of several members of class (2) (corresponding to strong anhar-
monlc ef,~ectsas well as weak ones), Breathers are fundamentally different
from kinks and lie at the heart of t.hcinteresting open areas in soliton SM.
Breather’,.$Bt are only known (MCLAUGHLIN) (l?l(ll!{ti~~li!{in class (2) for sG,
in which integrable ($5) case they in principle exha~st the “anharmonfc pho-
non” sp~ctrum:

~(l)( )1
u t -3 ‘x - ‘o) + ‘;C

o
!---- —.,— —.—.

‘2
x
o

- V“t)(l - mB~/l,)o”)
1
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B. Multi-conponent generalizations: A number of generalizations of class A
to multi-component ftelds have been studied. These are immediately relevant
for problems with multi-component order parameters, leading to coupZed non-
linear equations. Kink and other soliton solutions are known (sometimes
analytically) for many of these but little has been accomplished in incor-
porating them in a SM theory at the level we will report for class A. Two
exceptions should be noted. First, the Heisenberg ferromagnet with Ising
anisotropy, see C. Second, a natural generalization of class A to a complex
order parameter with 2-foZd symmetry breaklll~ (see [9,10]) exhibits both
$-follrand SG-like kinks and a mean field bifwration. SM of this model has
revealed a possible role for an additional non-t~pological excitation indica-
ted in numerical simulations [10].

c. The Heiaenberg ferromagnet and reZations: Spin Hamiltonians (classical
and quantum) have gained renewed attention from soliton devotees in recent
years for several reasons. Models of easy-plane ferro- or anti-ferromagnets
tith easy-plane magnetic fields (STEINER) have mostly been limited to SG
approximations (possibly with periodic coupling, cf. (1) ([11,12]; 53.2).
More generally we will refer here to the cl~ssical Heisenberg-Ising-XY Hamil-
tonian

(6)

where {~ } are classical spin-vectors $ ❑ S(sin” ;n, ‘ “Insin;n, cosn)
(Is I = !). The Landau equations of mo!ion are ~$~~~ = {?~?~. The exchange
ani~otropy in (6) might be replaced or supplemented with local anisotropy,
e.g. AZ(S~)2. Major interest centers on the complete integrability of (6)
in the n continuum limit [12] and of the corresp~nding spin-!jqu~nttim
chain (cf. 5). Here we simply give the flavor of soliton types by record-
inq a few single-soliton forms wc need. The continuum ferroma net with uni-

3axial local anisotrop.y [Hamiltonian density nqx) = - J(I - %(d /dx):) - A(SZ):]
has static n-domain wall solutions [13,11] (distances in lattice spacings)

()
X-x. fi<o x-x

52 = S tanh ~ ; S? = Se
()

sech —-0
d

S* = sx i i2y; d = (J/2A)’J

(7)

These should be contrasted with familiar spin waves having continuum disper-
sion (cf. (4))

‘k
= 2A + Jk7.

NotIce that there are no simple dymmi~’ generalizations of these walls (unlike
(2A)). In fact the natural dynam~c modes are cnvcZopr solitons in which
(o,~!)are intrinsically coupled. (The same Is true for exchan e easy-axis

!anisotropy. ) General expressions are rather cumbersome [12,13 and wil’1not
be given, but the pulse amplitude ~ n (- bound wall-antlwall) as its trans-
lation velocity * (). In the isotropic !ielsenberg limit, the pulse (velocity
v) is
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cos6(x,t) = 1 - 2b2sech2[& (x - X. - vt)]
(9)

$(x,t) ‘$0 +~t+ (v/2,15)(x- ~. - vt)

with b2 = 1 --y2/(lJSf2);~ = Jti. The pulse has energy
E= 16JS3]MZ] sln2(~/4S), w~t~ linear momentum P = 4S sin-lb and z-component
of angular momentum M = -4bSfl- . Importantly, there Is a gauge equivalence
[15] between the above continuum spin equations and the continuum nonlinear
(cubic) Schr6dlnger equation (see McLAUGHLIN). Both systems are completely
integrable (55) and the envelope soliton solutions to cubic Schrbdinger
require four action and angle variables (-x , v, $ , fl in (9)) for specifi-
cation as for SG breathers (5). Amongst in!egrabl~ Hamiltorlians we also
mention the Toda lattlce (see McLAUGHLIN). Although a contrived lattice
dynamics, it supports the third typical soliton variety, puZses. In addition
it is certainly the most studied discrete integrable Hamiltonian (cf. 55).

3. Exact Analytlc Results: Transfer Inteqral Operator (TIO)
3.1 Statics: Nonlinear KG Class

The 110, especially as applied to 1-D Hamiltonians with nearest neighbor
couplings (e.g. 52), has a dense history [1,2,6,11,16] with extensive data
(both published and unpublished). Recent attention to soliton pkenomenology
(N4) has generally encouraged more analytic investigation, particularly at
low T. He have described the TIO for nonlinear KG Hamiltoni3ns in detail
elsewhere [1,2]. A few central results will suffice here. He consider the
discretized form (1) &nd write the u2assicaZ partition function Z = Z:Z

-q

z. = (2-A~/:,h:)N/2 (lo)

(11)

Here L ❑ N! (N = number of lattice sltes),h is Planck’s constant. The quan-
tities {Cnl In the “configurational” (i.e. potential-energy) partition fun~-
tion expression (11) arp the eigenvalues of the TIO [1,2]. The TIOelgen-
functions ({Cn(i)!) constitute a complete orthoncrmal set on (-I, *I). In
the thermodynamic ?imit only the lowest elgenvalue r. is important to 2, or,
for instance [2,16], the (potential) free energy dens~ty F,~z -L-lr.-l~n~,:

I
L ,.,

F; —A.o’co. (12)

Equllihrium correlation functions, however, depec~,on both TIO elgeqva~~e$
~~;dufunctlons [2,16]: C (x) z .g(;(x))g*(t;(0))>— Z ifllljg(:)l@l”eXF\-X/.\n).

f
is an arbitrirry ?unctlon of $ and the “n-th n correlation lengtf~”

An ‘ l;A.~(ln-lo)]-l. In some (“kink-sensitive”) cases onl the first exci-
Yted level with non-zero matrix element is Important [1,2,17 . In writing

(11) and therefore (12), etc., we have assumed ~wriodic boundary conditions
$N+l = @ ●

I
These are readily varied within the TIO formalism [2,18] and thi~

Is somet mes physically necessary (e.g. for dlsco~en~uratlon arraYs - see
BAR); ?.g. rigid or fre? bourdarles with a fixed or floating “winding number”
(~(’iN-’~~)/21’in 5G). These considerations will usually not affect ~)~t(’)~~li~t.

quantities such as F,~. 2u~h boundary conditions wtll of course influer~ccthe
kirrk-antiklnk density (H4).
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Ifwe wish to Interpret the formally exact TIO results in terms of “ele-
mentary” nonlinear modes (52A), the displacive limit d <C I affords most
analytic control. To O(R/d) the TIO can [2,16] be replaced by a Schrtidiner-
1ike (fi~T)diffe~ntiazeigenvalue equation for Y($) = exp[-~LJkO&V($) ]@($~:

~($)’+n($)=cnyn($)

fl($) = - (2m*)-1d2/d$2+ V(I$)+ V. ,
(13)

with m* = A2ti2C2B2u. (@E(0))2 and V ❑ (2B~2!.A)-lln(Ac~B~2mL). In tern,~of
experimental 0 ‘applicability we no~e [8] t~at effects on eigenvalues from
using (13) instead of the true TIO are at most a few percent unless d L 21.
The two lowest eigenvalues deduced from (13) are shown as a function of T
in fig. (3) of [19]. Note t’-t for periodic potentials V($) as in SG we have
a band structure problem ((13) is the Hathieu equation for SG), with eigen-
values c labeled by a “band” index n(= 0,1 ,2,---) and “wave-vector” k ~n
the firs!’krilloutn zone (- ~ < k<%). The corresponding eigenfunctions I,ave
Bloch form [21. Fig. (3) of [19] shows the lowest two characteristic eigen-
values (top and bottom of the first band); these correspond most closely to
the lowest

fu
levels of ~1-four-like models. Go and El converge rapidly for

kT~O.2EK (i.e. m*Z>l).
I

Indeed, in this regime, they can be usefully
a alyzed [2,6] as

k

n~$l-split single-well oscillator levels: c
t %*-J + O(F.E(~) “. The tunneling term can be extracted by”s~a~aa~dto;
Wf!B=schemes, and for class 2A is found to have a “universal” form giving [2]

(14)

r!is a numerical coefficient depending on the particular V(:): e.g.
~i(SG~716,7 ; T,(d”l= 2,~. Eq. (14) includes a correction factor to UkB
((~/e)”2)co~llon to class 2A (at asymptotic low T) [20]. It should seem
physically plausible that E. Is related to harmonic (and enharmonic) phonon
modes, and t to kink configurations.

!
This suggestion [6] is now verified

for all class A (*4).

He will not dwell here on numerical solutions of (13) (or the TIO) for
non-asymptotic (high or low) T regimes. These are straightforward and have
been abundant since at least [16] for class 2A and many of the spin Hamilton-
ians 2C: Renewed in’crest has been stimulated by speculations on certain
magnetic chains (gee STEINER). In this context information from the TIO on
uOrrdktiO}l functions (see belr)w(12)) Is important In particular, certain
interesting correlations in plcnar (classical) anti-ferrornagnets are domin-
ated by kink-wzs{tiuc functions for which a simple Ising-like kink phenomeno-
logy can be construct~d. (Solitons enter through elgenva2ue tunnel-splitting. )
By contrast, corresponding properties in corresponding ferwcxnagnets are
determined from kink-ina~nHitive functions, which are dominated by anharmoni-
city, with kinks only entering weakly through a careful eigenfunction study.
Phenomenology is then more difficult. He do not have space to develop these
interesting topics here [1,17].

3.2 Statics: Other Models

Many of the models in 2A-C have been studied via the TIO. Tunnel-splitting
(- kink solitons) are not found in the Toda lattice [21,22J. Wtiodic
nearest-neighbor coupling in R2A is possibly interesting in view of planar

*
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approximations to easy-plane ma netic chains.
!

This Is considered in detail
in [11]. The SG approximation COS($ .$)+l.~($l+ -$ )2] is generally
found to be reasonable (for static pr~~~rt~es) in the ~l~pl!clve regime at
low T, with one essential provision. This Is that the TIOor (13) are
restricted to the range (-~,m) not (-=+,+=). Thus, even fn a SG approxlma-
tlon, we must only use 2m-pertodlc Mathieu functions, not the whole band
structure. T~,s has obvious consequences, particularly for correlation
functions since certain previously finite matrix elements In the TIO expres-
sion for Cg(x) (below (12)) may be excluded [11].

TIO applications to coupled scalar field Hamiltonians are also numerous
(e.g. [9,10]). In some cases analytic attention to tunnel-splitting features
can be profitable: see for instance [10] for a complex order parameter model
(2B). Spin Hamiltonians (2C) are also extensively documented (see [14]):
We report one example here for later use; the continuum unlaxlal Heise~berg
ferromagnetic (cf. (6) - (9))[14]: Using the TIO formalism, the free energy
density is [14]

F= fi-lfin(f?J/2~)- J +Eo , (15)

where c is the lowest eigenvalue of a (two-variable) “hindered rotator”
transfe~ matrix eigenvalue equation, which can be transformed into the single-
variable form

dz;(u)/du: + V(U;E); (U) = O
(16)

V(U;E) = - ‘&(FEH)’[(E/A) + tanhpu] sech:u.

The eigenvalue problem (16) differs from the Schr6dinger form (13), but for
lE~ H A (sufficient for c_) a very similar twwwZina problem emerges. With the

same low-~ HKB approach, tiefind 114] to = E. - to ~ith E. ❑ -A[l~4($Eti)-’
+ O(:.EW)--”]and

t T’O
o
_ 4(e/-.)lr,r,(’;EU)exp(-FEU). (17)

removed the
one-component

The factor (~/n) is cancelled by the same WKB corrections which
factor (e/n)’ for class 2A. The im ortant difference from the

\

class A i~ the prefactor SE YIn (17 : for class 2A this appears universally
as (FE ‘))~ (cf. (14)). Th!s universal feature of class 2A can be under-
stood ~4) very physically in terms of the phase-shifting effect of kinks
on the extended h,lrmonl~exc~tations and the related zero-freque~cy kink
translation mode. TRw spin model signature 13EWcan be understood equally
physically (~4), by recognizing two degrees of freedom for fluctuations, and
- synmetrjes - spin-rbtatlon about the easy-axis as WC1l as translation,
(7).

4. Nonlinear Mo~e Phenomenoloqy
4.1 Low-T Statics: Non-interacting Kfnks

Several equivalent schemes have been described in the last 20 years (e.g.
[5,23,24] which evaluate various statistical properties of models exhibiting
kink-solitons by explicitly recognizing those nonlinear configurations “or
collective co-ordinates”. Basically, these schemes are all attempts to build
a “phenomenological” representation of a partition function around non-pertur-
bative steepest descent or ~addle,.point trajectories. Examples from class 2A
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have been popular, but most schemes are more general (below). Typically, an
exact phenomenology is possible at low k T (<c kink energy) because kink-kink
interaction: can be neglected and we onl~ need to analyze the effect of a
a~ze kink on the hamon{c modes. One then finds that “zero-frequency”
modes, neglecting continuous synnetries, play a central role. He begin by
summarizing the approach of CURRIE, et al. [2] since this has heel applied
in generality to class 2A, and leads to some more sophisticated ideas in #5.
Complete details can be found in [2]. Extended harmonic wave forms (“phonons”)
are modified in the neighborhood (scale d) of a kink and most importantly
their density of etatea ie changed. This nonlinear feature is also central
to perturbation theories and to the treatment of quantum or critical fluctua-
tions about nonlinear configurations. We ccn handle the problem relatively
easily because of the assumption of a simple isolated kink. Analyzing 2inecr
oscillations about a kink is well-known from st b-lit.ytheory [2,24]. The

.fu{spectrum of small oscillations, X(x,t) ❑ f(x)e comprises both bound
(i.e. spatially-localized) and continuum (i.e. ext~nded) states. Since the
general continuum Hamiltonian (2) is tmnsZathnaZZ invai”iantthere must be
a “zero-frequency” (m=O)(’’translation” !or Goldstone mode describing rigid
kink translations. In linear order this correspo
the bound state spectrum: Qz = d:,~fi!(~~/~~~l~~e~~d~~~~~rt~~r~=0, f ,(X)

b ! V(~.),~~ (N - ) finite frequency bound statesmay, depznding on the potent,~
(O <Ltibn~~o; n=2, ..., ~ ~1

N ) describing armonic kink-shape oscillations.
E.g. fof SGor double quadrat c (52A) i~b= 1; for $:-fOurNb ~ 2. The ~emain-
ing continuum spectrum (with wave-vector k) has dispersion WE = w: + c~kz~
unchanged by the kink presence (eq. (4)). Only the as ptoticxI@avior of
fk(x) is important below: the most general form is [2~fk(x)
A exp[i(kx+!i,(k))] + Bk exp[-i(tcxt~,;(k))]. Here L(k) is a pk=shift
(~epending on V(t)). In fact SG and $-four belcng to a class [2] with refZec-
tioni!esa scattering (Bk=O). This is ofno physical consequence in the pre-
sent context but implies some mathematical simplicity which has made these
examples popular demonstrations. The parallels with other scattering problems
should already be evident and it will not be surprising that only asy~totic
scattering data is important (i.e. the phase-shift). This contains informa-
tion about the bound states and also about conservation of states. These are
not well-posed questions in a continuum; we also want to make contact with
the discrete TIO results (S3), so we consider a large system L(N = L/;,)and
impose (e.g.) periodic boundary conditions on {fk(x)}. [We will use the
uonthauum fk(x), A(k), which iz strictly inconsistent, but has been validated
for our purposes to leading order in L/d [25]. It ;S essential to use the
discrete phonon dispersion.] We see that the phonon density of states is
changed by the presence ofa kink: p(k) ‘ p. + Ap(k); P. = L/2~, ~p(k)
= (2n)-’dA(k)/dk. Conservation of states is assured by a form of Frledel
sum rule: pfdt’ip(k) = -n-lA(O+) = -Nb. p= principal value=) We can view
this as “trapping” of phonon states by the kink - a precise mechanism for
oharin~ degrees of .tiedom in a nonlinear ayatem.

Procedural steps to a kink gas phenomenology are now straightforward. ktl
will assume that kinks (and antikinks) form an ideal gas (at low T), but w:’
oannot assume an independent phonon spectrum: the available phonon phdse
space is unavoidably dependent on the kink presence (and velocity, via a
“Lorentz boost” - below). This prechuim partition function factorization
as truly independent exci’$~~ions. The phonon free energy density associated
with PO is F. = (kBT/2n)I-nlRdkfln(Bhmk), i.e.

F ‘>>~kBT[l-lEn(ho)oBd/R) + (2d)-1],
(!



which is preci8e Zy l~entlfled with harmonlclosci llator pieces in the TIO
fonnallsm (tl(kB1-/E(K): F. ❑ ME

8
- kBTL- LnZ +@Vo (see (10), (“ j).

Assuming Independent kinks (i.e. a ditive phase$shifts), the change in ~,honon
free free energy density from Ap is (for NK kinks with velocities {vi] and
N- antikink with velocities {~i}) AF({vi9Vi}) ❑ZiAF(vi) +ZjAF(Vj), with the
K single kink contribution

T/k
LAF(v)

J
= kBTP dl@(k;v)En(Bh~,k)

-lr/Jz

N

+ kBT 2 En(p-ffiWb,n)
n-2

‘B

&ZkBT~ Ln(E-fhtibn) - kBTNbh(ih~o)
n=2 s

(19)

liehave kept track o:2’’relativis~jc” dependencies (r) in (19) - N.B.
A(k;v) ❑ ~(”i[k-v~~co (1 + k’d’) “a]. In both (18) and (19) we have used

r~”?~” of the quantum harmonic oscillatora high T limit (kBT H> htio but K< . K
free energy expression to be consistent with the CzQSS~Cd~ TIO. For use in
55, consider (19) for the SG ca-e. Using the well-known phase shift formula
(below), a simple contour integration yields L~,F(v)= -k Tin[:.ll..o(l+ ,)].

P“As in quantization schemes [3], it is convenient to asso late LF(v) with
the kink (as a kink “self-energy”). A grand canonical partition function
G can then be constructed for ideaZ gasc8 of kinks and anti-kinks but with
renomna;izcd encr~ies;

El(j) ❑ ~E~o) + LAF(l) (2C)

Me have effectively already integrated over phonon degrees of freedom. Thus,
with the independent kink assumption, G(T,L,PK,UK ) ❑ exp(-YFo)G K% with

(7.

F
PWKNK

GK(LLvK) = e ZK(NK), etc.
~=o

‘~(NK)= (NK!)-l[h-~Ld,K)dpK:’J’E’(pK)]‘K.
d,.

(21)

q is a kink position co-ordin~te, p its momentum (52A!, and liKthe chemical
p~tential. hFor periodic boundary co dltions we set ~1 = ~ = O after any
thermodynamic manipulations. Standard thermodynamic !ormu%a lead [2] to
explicit expres ions for, e.g.,

f
internal energy,

kink density [nK = nK + ~= 2(131.) (r~b!.nGK/dllK)(llK
fr~~ ener9Y~ ‘peci‘~co~~~t’Ingeed the momen-



9

turn Integral In (21) can be performed exactly glv~ .3 (see also Lzt~ J

{
%O(!.E(;)) +Y,($E(;))] +K, (5E ~ )n~(T) = 2(md)-1 2E ~ (0)

}
(22).

(K , K, modlfled Bessel functions) andF = F - k5Tn~. Th 1 s~nr;~:l:.
ag~ees u~ctZy with the 110 result (see (14)7 tb l~)]a0(:.E , ,
par~ntheses of (22),

He cGuld have achieved this low-T result ~ivrrRu2?y fr~rclass 2A L,
workln with the /.(

7
~ey) only and expanding the nomenturi Integral to Gauzziar,

order I.e. ‘fE
f

‘ E.~ + $tlV2). The universal T-dependence found LJjTIC
(S3.1) then fo lows easily h]. Indeed ageneral Za~-Tn? fomulacar, be
obtained [7] which does not require c+2i&t knowledge of’the kink wavefom.
or small oscillations about it (i.e. asymptotic phase-zhifts and kink vil#-a-
tion males: there Is a general cancellation [7]) - these are only needed
implicitly via an integral involving V(:) and the location of its dPW~~rdtf
mtnima. This result can also be derived within other colle~tiv~ modl !~RIJl-
isms (cf. S4.2). Of course information on :hu perturbed “phonons” req’lirc-.
case;by-case small oscillation study. Having appreciat~rl the siqnificancr
of EY, it is a Simple textboGk ideal gdz calculation to introduce kink ~her.i-
cal potentials and han(!lephenomenology for varyinq Lmndarj condition:,
multi-kink species (WA), and topological re~tri~tif)n~ (e.g. kink-antilinl
ordering in ;-four). Agreement with TIfIresult~ hartbeen o’.”,]imd LzL].

4.2 Equivalent Low-T Appraache:,—...-— . ——--

Our conclusion from S3.1 i’,that static phenompnology for clar,%i’11,:: ~,,.’:
i> ~omplete and of little further interest. However, it IS important t~
emphasize the e uivalence of all competing

7
“colle~tive-k?-ordinate” phmnmcno-

logies [5,23,24 . An example is robably best. Clas9 2AcYamPlw can br
!found in several references [5,24 , so we presenL Instead a more recent c~am

plc [14] with ti zero-frequency modes:
(Ii#2C,3.2).

the lsing symnetry ferromaqncti~
Of the several formalisms available we choosu a collective co-

ordinate scheme for evaluating the partition function in iisteepor,tdrrc~nt
approximation, which emphasizes the very C1OSC conncct!uns bclk~’~ntr~atmrnl’,
of “lnhomog~neous” stotes in different problems [14] - metastable stilted~’cay,
disordered systems, quantum tunneling, nuclear physics, nucleation theory

5(see B TTIKCR), qUiIntizdtiOn srhemes (se@ MWl), Thr mQthDd discu%scd at
length by Langer [23] evaluatcr, the classical partition function in a path
integral representation by a steepest dczcent calculation with (idli<’,idn cor-
rections. To thi’,end a normal mode (“linear sttihility”)analysih must hr
performed about (nonlinear) solutions to the cjnvurniugequations of motion,
as in #4,1. The original functional Integration can then be replaced by
Integrations over the normal mode amplitudes. However, continuous s~mnctrir’.
have to be treated specially, since large fluctuations must be accomnod~trd
properly - e.g. rigid translations (x. In (7)). He therefore exclud~ z~r~-
frequency eigmnnndes from the normal mode set and Integrate s~paratrly nvor
the corresponding collective co-ordinate (e.g. Xo), Introducing approprialr
Jacoblans of transformation and rnsurlng orthoqufility w.r.t. zero clg~n-
functlonsm Modlflwtions to th~ fluctuation (e.g. spin-wave) spectrum dur
to nonlinear ●xcitations are expliclt via effects on the density of states,
as In #4ml. Here wc will make use of a slight generalization of the truhniqut’

9



to O(n) symnetry spin models
single-site anisotro:lv model
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[14], with the furth?r modification that our
has only O(2) synrnetry. Thus tw continuous

,..) and translation (xo)) must be treated specially.symmetries (rotation f“

First consider the single-wall sector partition function, 21. Follow;llg
[23] we find (Ss 1)

‘1 = exp(N:(A+J)
~ f- rEti) [d,][d.’][dSt]exp(-: .*H,dx) (24a)

.

= exp(N;(A+J) - rEH)(det~ )((2-)fi/det(;?4)) (24b)

with detx E det ~: . det ~xo (below). To derive (24) we have used the
lsing synrnetr~and transformed to a local co-ordfnate frame rotating with
the wall (U) profile (7): Sx = S:COSI: + Srsirr’u, SY =-Sr, S2 = -S:sinM

!To Gaussian fluctuation or erwti find .’dxJ~S(;)]~ -(A+j)N + EU
I ~~%~d;i where,~~ ~:.= (.+,*), J~S,, = - i(,-,*)(,, ,-,.l) and the stability
operator M = -Jd”/dx” + 2A COS211H(X). This stability operator is familiar
from the stability analysis for SG kinks [2](c.f. 54.1). The eigenspectrurl
comp~ises a “zero-frequency” bound state, fom describing ri id translation’,
(xo), and a contipuurnof “scattering statcz”, fk: M(x)f(x! ❑ ~f(~):
[
?

‘O, fo= (2d)-”’sech(x/d); [ = 2A(l+k”d”), fk = (2”)-i*(l+k~d’)-”Jex;(i}r)
‘(~~ + i tanh(x/d)]. A:, in k3.~, the den~ily of scattering states is

= ,O(k.)+ (2-)-”~’(k)/dk, whcr~ ,0 = L/7- and the phase-shift
~“.(k)= -1./k, -2tan-”(kd). Tilelast term in (241);0reprc~enting the ~ciIt-
tering state contributions, can then be @valuated after straightforward
integrations (c.f,[23]): (?”)r4/det(:M) = exp[-tdz. (F)’n(:L/~’)] : [4A./ 1
_[exp{-N.n(j.J/2) + N(2A/J) -;]. The sr(ond trrniis “he contribution fronl
free spin waves (,.) (u~ing a ditclete dispersion and taking th~ limit d .
as In F4.1) and the fir:,tterm dcr,~rfhc:,t!m effect of the ,dl,zu~,in the
den:ity of state:,,’,. The se~rnd trrm in (24b) d~;crlbc~,,contr’ibutiorl’..,fror!
Lhc wa)l ~ymmrtry mode:,. A:, in [23], dct~xo ❑ .- dxo:,~ dx, ,$M/.Xo ‘:. ‘
N(2/d) ‘. The ~G-ordin~tc tr,ln:forn;~tion:,iIb(JVPwerr ctc>lgned to supprrr,’,
the rotational tymmctry about the L1d!,y-iIXi5. Howcvt’r, the f J1 (ttihilify
m~’m.r for the wal1 contain’,a ~rc(,)ndzero-frcqucn~y mode II!( from ,s~l:”)
{~‘ (Sx, s{)), rcflc tinq #h[Irot(!~ion[llbyrnmctryIn spin l?p~Lc [14]:
det~:o = ~“ d:u~~,, $~,md~”- : 2 .-,dx :r~h:(x/d)}’ ‘ 2-(2(1)’. Gdthcriflg
re~ultb, wv have (~u;~pru~’,ingthe trivial ground .tdtr energy - N(A+J))
1 = ?xp[- N(2A/J)’ - NII~(;J/2-) - :.tH]D(4-N)~(4A;/-). At low T ( LH/~l\)
(I.e. lnw Wdll dcn!,ity), thib Linqlo wall sector cdl~uliltiun cilflk t’xtrndvd
to the multi-wdll rcginl(’[14]. The total partition function 2T Ii ol)t~lnrd
from a parlial c~pnrl(llltifl?iorlof /1, with a’,:,o(.i,ltodfr~’rcncr!lyper hpln
7 : - 1“WLl171:

F = 4AkDT/lH t kDT,n(:”J/;’-)- l(](r/-)A(’~;)(-:”l”u). (70)
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4.3 Hfgher-T—.

Since we wish to emphasize rigorous mod~ phenomenology, it ts important to
stress how Z~ttZc is known beyond i~symptotic 10W.T (except at trivial high
T, where a soliton basfs is a poor starting point), both for statics and
even more for dynamics. 110 numerics are only consistency checks for plausi-
ble phenomenoloqles [17]. flDsimulations (SCHNEIDER) provide very ViSUal
information on collision Chiinnels for strongly nonlinear modes and motivate
approximate phenomenologies. In many cases there is little doubt about the
fundamental role of kinks or other nonlinear modes but treatment of mode
interactions Is &d-hoc or perturbational. Of course such phenomenologicz
can be valuable theoretical and experimental guides if the are net used
~eyond their regimes of valldit.y. hFor exampie, estimates 19 of kink- nti-

!kink density from appropriate correlation lengths within TIO S40W how n, i’.
decreased w.r.t. the low-T expression (23). Very little is known about
vlrial kink-kfnk Interactions. Expans

/)7
of thr in-well oscillation contri-

bution E. (see g3.1) in powers of kBT/C. can be identified exactl~ term-l,~-
tenn as an anl.armonic “phono~” expansion [2]. HowevPr, this doe$ not recog-
nize the intrinsic spatial and temporal coherence of modes such as “breathcr~”,
even though these are very apparent in SG-like and f-four-like model simula-
tions, and can bf:des~ribcd in enharmonic cxpan:ions. The same probler ari’,rr,
if perturbation uxpan~ions al-cmadr (at in collective-co-ordinate sch~mr’,)
about an N-kink co~fiquratiun [?4]. A reldtPd prOIJl(YIOccurt in all colluLl-
ive co-ordinate :,chrrJ:I’,[24] whcru kirw? ticand Lonfiguriitional ~Jartiti(ln
function component’, iirc separated (a~ in TIO). It i:,then diffi~ult ~(1
as~ign part~ of Z, to individual nonlinear modct, ~or 1ow-T kink’,thir,i’,
Po!,:,ilIIcI;for breilthrr~ and simildr pul:,(Ior envclopr %ol itan’, it i:,~ pr[l-
blcdlm IIIprinCi~JIC, IJ’/Im!’m#intrqr~hlu Hamiltorrian ~y~tcm!. prnvido d mmIIO,
Of ouerLoming t.hi%diffi~ulty and Pxtcnding rigorout phenunlerlologyto arl,i-
trary T. In pra~tice diffi~ultic’, rcnuin, ~JUt W(I con;idcr $u(.h %y’,t~~’,II
major :,111ifon 514Lutting erlq(’:

5 Intqrirlllcl{dnliltonifln~t(’ll:’lJ ..... .---.---....---..... ---

TIM’lJOalllifUlmathcnl~t.i~!,rirvclnp(ld in th(’ ld’,t 10 yp(lrr,for Int[’rjrdlllo
Hamiltonidn: hii’,Iwen intrudu[ed by MLLAU(illlll{. Tor W tho m,l.jorintt’rl”,!
is th~t canoni(al tran~formationr, art’prr~crihud to (g[’n~rcliz(”d)“al.%lorl-
angle” v~riahlo’,or natural “nonlinear nf)rmiilmnd~rl” - c.q. in tho ‘l(Inf.O
f.hdtth[’,yform a complcto orthogonal %rt. (Ttw Hamt ltoniarrtrp,lrnt]iIit.y
is a moralization of th~?,found in ,’;

!
u-”t~~spcrlurhation ordor for a kinl ,

$4.1. Nonlincdr mode% nc[e~~arily int~ract, but in the’~r‘,PP(Ial car.r’.
only through q~nrral izcd ~’(v:l?i,l~; co-r)rdinat@l,,i.~m asymptotl( phcl:io-!,hifl,
- again grncrallzing *4,1. I)c!,pit.unormal-mode ~nergy s~par,ltlllity. thr

piKISC spat.rfor .IZ:tIn,it,imode% i~r affrctcd by tho Incml mod{’ rnvironnwnt:
It i% tl:cnnatur~l to try to grncralizc thr cal(.ulatinn of R4.I hy di”,[r[’-
tiling tlw!‘Iyritrmand attrmpf Inq to kv~p tra(k of modil “,harlr~q.u,,will
dis~u>~ IM’IOWthe prohlcms with this dpproach for mode!, who’,cden”.ityCaII
br larqv, I)ut.firsi UP illu%tratr tlw’fcdlfflcultlr% for Sfi.

Thr invrr%r %~atterinq tran!.form (1ST) allowi u’,to perform a Can[J~llldl
transformation from i;, :x, ,;t)to vnriahlr% nffcrtivrly lahrling “por,illon”.
“vulo~lty”, “ft-rqurncy”of cornponrnt nonlinear mudr%, ~or SG, tlwrr i:.(1)
a continuous sp~rtrum (extcnrkd Mndrt or “radiation”) pfiramrtrizwl hy “nlonlrr-
tum” p - hk(-- . p I o); ,(p) (ti~n~~tyof states) (0 % ,,(P). -) and :.(I))
((l- r,(p)I h) constitute a~t.iurl-an!llrvarinblo’,a+ in hflrmoni~ throry with
himilor IIoic,!,on t,ra[.krts{~.(~)),,(p’)~ - A(p-p’). ({I) ~ finitilnuml)pr.~)f
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kink-sollton variables pj (asymptotic
(see #2A). (-<

“momentum”) and q“ (tnitlal ‘Posit{onm)

breat
?M ‘j’ ‘Ji~~r:d’’fpJ~fJ~B=’’’J’f”a!~)al)al “:;;;’nrfir:;:

~~-ordl ates
< 4vE I .- B

)B mj Is rela ed o fihe In ●rn~l freque cy of the j-th br~ather
(COS UJ ~ ~~/.o, see (5)) and f~ is related to the phase angle of the
breather osc llatlon. The Hamll onian o,;amztir as [27] (cf. 62A)

H‘f!’ ‘(x)f O .(d(p:Co + h:.~)’-’

Ii~ ‘B

+ X[ ] Z[ 1,++:)’“+“P;’coj : “,
Pjco , ●1(1.)

j.1 j=l

(27)

with ht kink solitons (and anti-solitons) and N breathers.
B

The findl remark-
able feature is that all mode InteractIons are air-wise additive. Thu%
as~ptotic phase shifts can be taken In pairs and the low-T addltivlty anr:c~-
t: mm In :4.1,2 shculd extend rigorously to arbitrary T for kinks and breath-
ert. Expli~it expre%slons for linear mode phase shifts from an isolated
birl~, (1.;v),({4,1,2) or brea?her, :B(h;vBo.~), (M’low) are available [27].

TIIP’,u~ir~unl;t~rl~oc,make the con~eptual general iz,ltion of the luw-T pa~-
titiun fun:li(ln~dl~uldtion imnwlidt~. He discretlz~ on d finite Ierrqth L.
;,”.” 1“”., (;7) ‘,tillhold% and ,:.w...-Jcontinuum phase-~hlfts. Indrd the calcu-
lation fur kirlbc,wd~ given for an arbitrary kink velocity, so that (22) i:,
unclmnqcd. Followlnq a parallul procet~rc for breathcr~ wc new! .’ Fu(v[;,.[;L
t h c Imnqv Irlc~tendwi (“pllon[jrl’’),~od(’free en[’rgydcn!,it CI+U to ~ ~,inqlII
I)rVll!h[’r: {L:~B(vB,.1~) : hl~l 1’:m,,,d~’ p(h;vu,.~)’rl(:h.} , l.c.

(:’!,)

l.;(ll,,”.l,) (u),
“ h,,l ~. - #kHl,rl[:.h.{)(,t’)] (:’11)
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a,

GB(T,L,PB) = ‘B
~ exp(fibBNB)ZB(NB) with ZB(NB) ■ (tiB!)-lZB and

NB=O
r, L l’r2 @), ~
P P LP.’

‘B‘ ‘-’],,%&B~“B~ 1 givingdF.Qxp[-EE~(PB.uB).

(Note how the phase shift effects cancel powers
feature lost if we use pwc ideal relativistic gases.) He presented thi~
calculation to illustrate some ch~racteristic problems (below). Note alread~
the renormalization of EB (eq. (29)) even as ~

1 “ ‘“?’
the harmonic ?imit.

This limit (L, D f,,; ~1 ~ 0) is the source of m ny r lntnd difficultie~:
(30) can be e!alua?ed tediously in terms of modified Bessel fns., with luw-T
expansion

● (30)

of h in (21) and (30), a

The reader can check the several unhappy features in (31): for instan~e,
the breather dcnsityn (f) = Z /L (as~uminq ,,B= O), and the free energy
density is ~ = F - k ~n - k ~n he compared wi~~)thc TIO result fur
SG[2]: F= F -‘k Tn} -~kB1/~d)~~C~~))-l+O((k T)”/E “). Even more indi~~-
tlve is the eflDlicft,2iIuIP,:,Iu,~, ‘~ ~nte~ra~o~f~r any finite T)of the remainl q
in (31) de m + ti, (dominantly frorll, /, ~ I - (k T/E ~ )’). These profl-
lems arise f#om ohr lac4 of control ov~r ~nclecon!er~atiori and tatiinqa cun-
slstcnt thermodynamic limit (below). They arc qultc generic to gaple:,~
enllri:’;l’solitons: for jn~tancp, we have f~und the 11,1111,difficulties in
analyzing (B;,z::ni,s,llSM for the cubic Schr5dinqer equation or the isotropic
ccntinuum ferromagnet (2C), for which mode-~haring from asymptotic phii$e-
Shifts can also he established (see ~lso [2~]). Slightly more control m~y
bc possible for Ii(i’ttt’ solitons a% in the Toda lattice, ev~n though they alw
have a gaple~s energy spectrum. For instanco YOSIIIDA [22; has usrd /vJ’/)i/:i
chain action-anqlo variables (for “soliton:,” and “ripples”) on a finl~e ch,lill
and imposed ]eriod~city and mode con%crvation by hand (restricting ripplt’

\wave-vectors . IIIthis way hc finds agreemunt with TIO results at l,I:JT.
Here again, however, contrullml uze of phase->hlft information is more appro-
priate (work In progress) as well as intrgrahillty structure for the .fi’~;::,
dlscretc ch~in (below). For kip~ksnlitons (i.e. finite energy qap) wr saw
(!i4.1) that exact agreement with TI(’Icould ho ohtalncd at li)~~T. In vipw
of SG integrability, It might h~ thought that result (22) would glvP an
e act kink doscriptfon at all T.
I

In fact comparing with thu prcdictcd [1g]
n from correlation length% In TIO, wc find that (22) Is a slightly I,k)wIs
pr@dictlon than the asymptotic formula (23). Th~s seem% to argue for the
Importance of non-trivial mode intcraction~;on a di~crcte SGchain with
periodic boundar conditions.

!
[Ue note in passing, however, that !t is

advantagenu~ [29 to usc [~ (cq. (70)) to construct an “ldcal gas” volotity
dlstrihutlon - as used illI)lIeIlf}tii(’rI[)ln!Ilcalst.ructurc factor modnls.]
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(1) we have implicitly essumed above that there ts no special distinction
of multiple occupations of the same “soliton state” (specified by positions
of poles and pairs of poles in the eigenvalue plane in inverse scattering
theory). In general this is untrue which will be important for high soliton
densities (from pulses, envelopes or, at high T, kinks).

(ii) The possibility of arbitrarily low energy breathers and correspondingly
large densities, and spatial extensions’ means that consistent mode co~nting
is more sensitive than for a low density of local kinks. The canonicdl
action-angle variables and phase-shifts used above were strictly val’d for
a continuum system with decaying boundary conditions. The use of th~se data
for a finite discrete system with periodic boundary conditions (as used for
TIO) is clearly uncontrolled as is the process of taking the t,hermodynamir
limit. (Finite gap, localized kink excitations were insensitive to th~>e
concerns.) One can try to enforce mode conservation and soliton sizI? cut-
Off in approximate ways, but the most desirable route is to construct SM
with 1ST data for a finite, discre~e, integrable system with, e.g., periodic
boundary conditions, and ttnuZZy take the thermodyna~ic limit. This is on-
going work: 1ST status for such problems is summarized by McLAUGHLIN. The
Toda lattice is especially attractive as well as some discrete spin mod[l~
related to discrete generalizations of non-linear Schr6dinger.
(iii) Ckccica Z SM was implied in TIO by the separation Z = Z, Z: ($3.1). It
was implemented in our nonlinear phl’nmnenology hy the use of high-T (kBT” ’.o)
harmonic phonon free energy express lun~ (e.g. (18)). There is some incon<i>-
ienc;ttherefore illour use of a purely ~“;ucrfetiibreather spectrum, especially
for low energy (extended) breathers with EB 2 !l... (This problem i~ intrin:,ic
to the dual particle-oscillator character of breathers and related soliton~.)
ln particular the ,~ti,r~::lntir~ather spectrum is d~n,-r,’t,. Thi’,is often not

serious for application but in ~~r low-energy breathers slnc~ the f,i.!,:”!
energy breather is phy~ically equivalent to the quantum harmonic oscillator,
i.e. Klein-Gordon quantum. (c.f, the clazsical spectra (R2A),) 11’docd~11.t
breather may bc viewed as a multi.magnon (or phonon, et~.) bound !tatc:
breatbers and solitons exhaust the quantum SG spectrum. While it iL a teltl-
nically challenging problem to construct a truly clastical SM (for arhitr~ry
T), this was not really achieved even for kirik% (s4.1) and phyrical concern
necessarily centers on ,7UZnt.W SM from which a high T (classical) limit call
be extracted if desired. It is therefore our opinion that a major effort
should now be devoted to quantum SM of “!,uliton” systems. ouantizat ion
scherne~for nonlinear ohject~ will be reviewed sepdratoly by MAKI: somu
Useful progress hat been MddC in con!,tructing ~ quantum SII1for ,;-four, SLi
and double quadratic , etc. (H2A) using nonlinear gencr~lizations (dna109011:,
to classical colle~tive co-ordinate manipulation, H4) of conventional ~IIP-
turLu!#:~fIfunctional integral fornlalism~. An alternative approach is to
concentrate on fully i)ll.l):~ltl~)ll”(lam:lur:Hamiltonian~ (including SG), particul-
arly motivated hy connections with lfl.!ht’,mil,~t::literature [30]: sec al%o
BONNER, EMERY, MLLAUGIILIN. WC do not have spa~c t’)describe this philo~(lplly
here: details will IIcpublished elscwhcru. The basic ingredient~ arc [30J
(i) the unification of the nmjorit.y of soluble many-body models as intrgrahle
quantum Hamiltonians with explicit connections to a generalized l:ethcan%irtz;
(ii) physical ur~derstandinq of clemrntary “sol iton” excitations from intuqra-
ble el~wi,~,~~Harniltoniailpredecessors [12]; (iii) use of quantum SM from
Bethe ansatz lit~raturc (e.g. for the spin-l: lsing-XY-Hriscnbrrg model, w
connection~ to both SG-liku and Schr&iinqcr-lik~ integrahlc Ilnmiltonlans)

6. Outlook———.
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be apparent from other talks at this Heetlng - e.g. AXE, BAK, BONNER, EMERY,
RICE, SCHRIEFFER, STEINER, as well as contributions to the soliton session.
As far as statistical properties are concerned, we sr,iggestamong ~mportant
future areas: (1) exploitation of quantum integrablllty, the Bethe ansatz
and soluble model equivalences; (Ii) study of Impurity effects on sollton
SM (classlcal and quantum); (111) study of turbulent transitions and fully-
developed turbulence In driven, damped sollton systems with thermal noise
(having potential lessons for both solid state and fluld turbulence theory).
These are all on-going projects.

Referenctis

1. A. R. Bishop, in SoZiton~ and Condcnacd Matter l)h~~icc, eds. Am R. Bishoh
T. Schneider (Springer, Berlin, 1978).

2. J. F. Currie et al., Phys. Rev. BZ2-(1980); A. R. Bishop et al., Physics
D~, 1(1980); A. R. Bishop et a-l.,~dv. in Phys., in prep.

3. e.g. R. Jackiw, Rev. Mod. Phys. 49, 681(1977).
4. S. F. Edwards and A. Lenard, J. ~th. ‘hys. 3, 773(1962).
5. A. Seeger and P. Schiller, In PhgOiCaL AcoutI~hG, ed. H. P. Mason

(Academic, N.Y., 1966), Vol. 3.
6. J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. Bll, 3535(1975).
7. R. 14.Del.eonardlsand S. E. Trullinger, preprint (~l~O); and refs.
8. A. R. BishoP, unpublished (1975).
9. J. F. Currle et al., Phys. Rev. A20, 2213(1979).

10. S. E. Trullinger and R. M. @eLeonfidls, preprint (1990); K. R.
Subbaswamy and S. E. Trulllnger, preprint (1980).

11. A. Patk6s and P. Rujiin,Z. Physik B~, 163(1979); P. S. Rlseborough ~nd
S. E. Trullinger, preprint (1900).

12. e.g. L. A. Takhtdjan, Phys. Lett. 64A, 235(1977); A. E. Borovik, Pism(l
JETPQ, 629(1978); E. K, Sklyan~n~~reprint (19UO).

13. K. A. Long and A. R. Bishop, J. Phys. Al?, 1325(1975!.
14. A. R. Bishop, et al., J. Phys. C(Lett. )~_3 (19bO); and in prep.
15. V. E. Zhakarov and L. A. Takhtadzhan, Teor. 1 Mat. Fiz. ~~, Z6(197(11.
16. D. J. Scalapino et al., Phys. Rev. B6Y 3409(1972); and rcf$.
17. A. R. Bishop, preprint (1980).
18. e.g. N. Gupta and B. Sutherland, Phys. Rev. A14, 1790(lq76); J. l-.

Curie et al., Phys Rev. A16, 796(1977). ‘“
12. A. R. Bishop, Solid State ~mm. 30, 37(1979); see also A, R. Di:,hop

and J. A. Krumhansl, Phys, R(?v. ~2, 28?4(1975).
20. S. Goldsteln, Proc. Roy. Sot. (Ed{~-burgh)T49, 21O(192!I); R. M.

DeLeonardis and S. E. Trullinger, Phys. Rcv~B20, 2G03(197!~).
21, e.g. H. BUttner and F. G. Maertens Solid Stat~”Conml.~9, 663(1979).
22, F, Yoshida, privi~tecommunication [19NII.
23. e.g. R. Landaucr and J. A. Swanson, Phys. Rev. 171, 16GII(19L1); J. S.

Lanqer, Annal. Phys. (NY) 14, 108(19G7). ‘—
24. e.g. G. F. Mazeni.oand P. ~Sahnl, Phys. RCV. OJf!,613!t(197H); W.

Apel et al., Z. Physlk B 34, 183(1979); S. Col@nmrl, PhYIt. R(lV. O):J,
2929(1977).

—..

25. N. Theodorakopoulos, J, Phys. A12, L211 (1979).
26. S. E. Trullinger, Phys. Rev. B7~(l~~.
27. J. F. Currie, Phys. Rev. A~6, ~~92(1977); V. E. Korcpin and L, D.

Faddww, Physics Reports C ~20 1(19711).
211. H, i. Fogedby, Pi~yslcaScrl~a (in prrss).
29. S. E, Trullinger and A. R. Bishop, preprint (l!NHI).
30. A. R. Bishop, Z. Physik B ~7., 357(191!0);and rcfs.


